When it comes to thinking about Apple Silicon, any industry insider will tell you that there is a long lead time attached to silicon development — meaning development of the chips inside the most modern devices today probably began several years ago.
Zoom out and think back 13 years to the first real Apple Silicon chip, the A4 processor Apple put inside the iPhone 4 in 2010. That early processor reflected major strategic decisions, including the 2008 purchase of PA Semi and its ongoing work with ARM, which still creates the reference designs Apple uses at the core of its own chips.
Apple has continued to iterate upon the first Apple Silicon iPhone chip. Today’s iPhones run A17 processors, while Macs have already reached M3 status. Apple is now unique in the industry in being able to offer 3-nanometer processors across its mobile and computer devices.
These aren’t the only processors the company makes — think about the S1-S9 SiP’s used in the Apple Watch and HomePod; the W-series Bluetooth/Wi-Fi chips; the H1 and H2 headphone processors, even the U2 everyone wants inside of an iPhone, which handles Ultra Wideband.
Coming soon, you’ll see the first R-series processor destined to mold reality inside of Vision Pro. At a lower level, Apple has sensors, power management, and RF networking designs emanating from the silicon design workshops in Europe, US, and Israel. These are huge investments. The European silicon design center in Munich, Germany, now employs more than 4,600 people. And we think Apple is working to build and design systems for 5G modems (delayed), photography sensors, and more.
The pillars: performance and efficiency
What’s important to understand is how the company sees these efforts. For that, you should focus on principles of constraint. Apple has worked with numerous constraints almost since inception.
Think about the PowerPC chips that drove Macs before Apple’s move to Intel. Compared to everyone else, those processors were really slow, which drove Apple to get really good at tweaking the best possible performance out of processors over which it had little or no control. That’s where it doubled down on controlling the software and hardware designs and making sure they worked together.
That mission didn’t end when Apple shifted to Intel, and it hasn’t ended now that all Apple’s products use Apple Silicon. Take a look at everything the company tells you about new products as they’re introduced, and you’ll see that computational performance per watt is a central pillar to Apple’s chip design philosophy.
Throughout the history of Apple Silicon, Apple has needed to focus on problems others don’t have. Market share for those early iPhones grew incredibly fast, which drove the company to seek out some way to build high-performance processors that ran well on little energy and were capable of delivering good results on frugal memory.
But the primary problem across the last decade…
2023-11-23 10:41:02
Original from www.computerworld.com