Researchers from the Babraham Institute, UK, and the German Center for Neurodegenerative Diseases (DZNE) have identified a backup mechanism of protein quality control which prevents the toxic effects of protein aggregation in specific tissues when normal methods of molecular monitoring fail. Their work has been published in PLoS Biology.
By understanding how different tissues tackle protein build up, this research could accelerate the identification of ways to protect tissues that are vulnerable to protein build up, possibly tackling both disease-associated protein aggregates and also age-dependent aggregates that accelerate the functional decline of tissues.
Just like factories identifying faulty items coming off the production line, cells use different mechanisms to monitor protein production, folding and accumulation. During aging some proteins become prone to accumulating due to disrupted protein folding and the decline in the protein quality control mechanisms.
Protein clumps called aggregates cause problems for normal functioning of the organism. This increase in protein accumulation is not evenly distributed across the body and some tissues are more likely to accumulate aggregates of certain proteins than others, for example amyloid plaques that build up in the brain during Alzheimer’s disease. What drives the tissue-specific vulnerability or resistance to protein aggregation remains poorly understood.
By studying protein accumulation in the nematode worm C. elegans Dr. Della David and her team found that even when the typical protein quality control mechanisms were disrupted, there were lower levels of protein aggregation in the feeding organ of aged worms, the pharynx, compared to the body walls.
2023-09-14 14:48:02
Article from phys.org