North America’s 2021 heat wave was Washington’s deadliest weather-related disaster, claiming over 100 lives in the evergreen state and many others in neighboring regions. Scientists not only suggest that such heat waves will grow more intense and strike more often—in new work published in npj Climate and Atmospheric Science, they reveal the underlying mechanism behind these strengthened heat waves.
“But we haven’t understood exactly what is happening in Earth’s atmosphere that intensifies these heat waves, nor what causes them to strike more frequently. Now, we can see which specific changes in atmospheric circulation patterns likely underpin these changes.”
The authors of the new study sought to better understand how global warming affects heat domes like the one from summer 2021. The authors present their work this week at the American Geophysical Union’s 2023 fall meeting in San Francisco.
Previous work by PNNL scientists suggests that current climate pledges from countries around the world are still insufficient to limit global warming to 1.5 degrees Celsius, bringing the risk of continued extreme weather. COP28—the global climate conference in which world leaders manage emissions pledges with the goal to limit warming—concludes today.
“Our new work suggests that if current emission trends continue,” said co-author and atmospheric scientist Ruby Leung, “we expect these changes to boost heat wave risk over the entire Northwest region in the coming decades. Residents of California, Idaho, Oregon, Washington, and other neighboring states may experience especially strong heat waves. By better understanding the conditions that precede these events, we can all be better prepared for them.”
2023-12-13 10:00:04
Original from phys.org