Have you ever been compelled to enter sensitive payment data on the website of an unknown merchant? Would you be willing to consign your credit card data or passwords to untrustworthy hands? Scientists from the University of Vienna have now designed an unconditionally secure system for shopping in such settings, combining modern cryptographic techniques with the fundamental properties of quantum light. The demonstration of such “quantum-digital payments” in a realistic environment has been published in Nature Communications.
Digital payments have replaced physical banknotes in many aspects of our daily lives. Similar to banknotes, they should be easy to use, unique, tamper-resistant and untraceable, but additionally withstand digital attackers and data breaches.
In today’s payment ecosystem, customers’ sensitive data is substituted by sequences of random numbers, and the uniqueness of each transaction is secured by a classical cryptographic method or code. However, adversaries and merchants with powerful computational resources can crack these codes and recover the customers’ private data, and for example, make payments in their name.
A research team led by Prof. Philip Walther from the University of Vienna has shown how the quantum properties of light particles or photons can ensure unconditional security for digital payments.
In an experiment the researchers have demonstrated that each transaction cannot be duplicated or diverted by malicious parties, and that the user’s sensitive data stays private. “I am really impressed how the quantum properties of light can be used for protecting new applications such as digital payments that are relevant in our every day’s life,” says Tobias Guggemos.
2023-07-04 11:00:04
Source from phys.org