Enhancing Light-Emitting Electrochemical Cells with Dendrimers, Cellulose, and Graphene: A Sustainable and Durable Approach

In research that could lead to a new age in illumination, researchers from Japan and Germany have developed an eco-friendly light-emitting electrochemical cells using new molecules called dendrimers combined with biomass derived electrolytes and graphene-based electrodes. Their findings were published in the journal Advanced Functional Materials.

Electroluminescence is the phenomenon where a material emits light in response to a passing electric current. Everything from the screen you’re using to read this sentence to the lasers used in cutting edge scientific research are results of the electroluminescence of different materials. Due to its ubiquity and necessity in the modern age, it is only natural that extensive resources go into research and development to make this technology better.

“One such example of an emerging technology is ‘light-emitting electrochemical cells’ or LECs,” explains Associate Professor Ken Albrecht from Kyushu University’s Institute for Materials Chemistry and Engineering and one of the leads of the study. “They have been attracting attention because of their cost advantage over organic light emitting diodes, or OLEDs. Another reason for LECs popularity is their simplified structure.”

OLED devices generally require the carful layering of multiple organic films, making it tricky and costly to manufacture. LECs on the other hand can be made with a single layer of organic film mixed with light-emitting materials and an electrolyte. The electrode that connects it all together can even be made from inexpensive materials unlike the rare or heavy metals used in OLEDs. Moreover, LECs have lower driving voltage, meaning they consume less energy.

“Our research teams have been exploring new organic materials that can be used in LECs. One such candidate are dendrimers,” explains Prof. Rubén D. Costa of the Technical University of Munich, who led the research team in Germany. “These are branched symmetric polymeric molecules whose unique structure has led to their utility in everything from medicine to sensors, and now in optics.”

2023-07-08 02:24:02
Link from phys.org

Exit mobile version