New study discovers how altered protein folding drives multicellular evolution

New study discovers how altered protein folding drives multicellular evolution

Researchers have discovered a mechanism steering the evolution of multicellular life. They identify how altered protein folding drives multicellular evolution.

The study, published in Science Advances, puts the spotlight on the regulation of proteins in understanding evolution.

“By demonstrating the effect of protein-level changes in facilitating evolutionary change, this work highlights why knowledge of the genetic code in itself does not provide a full understanding of how organisms acquire adaptive behaviors. Achieving such understanding requires mapping the entire flow of genetic information, extending all the way to the actionable states of proteins that ultimately control the behavior of cells,” says Associate Professor Juha Saarikangas from the Helsinki Institute of Life Science HiLIFE and Faculty of Biological and Environmental Sciences, University of Helsinki.

Among the most important multicellular innovations is the origin of robust bodies: over 3,000 generations, these ‘snowflake yeast’ started out weaker than gelatin but evolved to be as strong and tough as wood.

Researchers identified a non-genetic mechanism at the base of this new multicellular trait, which acts at the level of protein folding. The authors found that the expression of the chaperone protein Hsp90, which helps other proteins acquire their functional shape, was gradually turned down as snowflake yeast evolved larger, tougher bodies.

2024-03-09 04:41:03
Original from phys.org

Exit mobile version